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ABSTRACT

Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fun-
damental and applied research in the physical sciences. Research programs at the Laboratory run the
gamut from theoretical investigations, to modeling and simulation, to validation through experiment.
Over the years, the Laboratory has developed a substantial research component in the areas of signal
and image processing to support these activities. This paper surveys some of the current research in
signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any
one research area, but an extensive citation list is provided for further study of the topics presented.
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1. INTRODUCTION

Lawrence Livermore National Laboratory (LLNL) was founded in 1952 to conduct research on the
design of thermonuclear weapons. Over the years, the Laboratory has evolved into an institution
that conducts research in many different scientific and engineering disciplines. Since its inception,
the Laboratory has built research programs around the three pillars of modern scientific inquiry:
theoretical investigation, modeling and simulation, and validation through experiment. In the early
years, signal and image processing played an important role in the design of instrumentation and
evaluating experimental data related to weapons design. Today, this role continues with a focus on
non-nuclear experimentation with the stockpile stewardship program. In addition, as the Laboratory
expands its role into other areas such as energy research and nuclear non-proliferation activities,
signal and image processing continued to grow as disciplines fundamental to many programs.

This paper describes some of the recent research activities in signal and image processing at
LLNL. In particular, vignettes of recent advances in adaptive optics, optics inspection for the Na-
tional Ignition Facility, speckle imaging, time-reversal signal processing, and radionuclide dectection
are presented. The paper does not provide depth on the selected topics. Rather, interested readers
are referred to an extensive list of citations.

2. SOME RECENT RESEARCH AREAS

2.1 Signal processing for high precision control in Adaptive Optics

Research in Adaptive Optics (AO) began at the Laboratory in the mid-1990s. Research and de-
velopment interests in this area include opthamological applications, and control systems for large
telescopes.1–16 Here we describe research on the control algorithms for the AO system of the Gemini



Planet Imager (GPI). This instrument is designed to image Jovian planets that are one to ten million
times fainter than their parent stars, and adaptive optics is key to realizing this objective. Poyneer
and her colleagues have recently made seminal advances in the area of high precision control of
adaptive optics, and their techniques are slated to be implemented on GPI. Here we briefly discuss
four advances: Fourier transform wavefront reconstruction, the spatially filtered wavefront sensor,
Optimized-gain Fourier Control and Predictive Fourier Control. Together, these techniques enable
direct imaging of extra-solar planets by improving AO performance well beyond present general
purpose systems.

Most AO systems operate by conjugating the phase aberration of the wavefront. This perturbed
wavefront is corrected through phase conjugation on the surface of a deformable mirror (DM). The
corrected wavefront is then used by the system, i.e., it is imaged by a science camera. The DM
is almost always controlled in a closed loop where the aberration of the wavefront is measured
by a wavefront sensor (WFS). Because the derivative of the phase, not the phase itself, is usually
measured, the true phase must be determined through the process of wavefront reconstruction.
Given this residual phase, a control algorithm is used to determine the best shape for the DM to
take to correct the temporally-varying phase aberration.

AO performance can be measured in terms of both the residual phase error and the quality of the
point-spread function (PSF) of the imaging system. In astronomical applications, a well-functioning
AO system can have a few hundred nanometers of residual error, which substantially sharpens the
PSF and significantly improves imaging quality. A general-purpose AO system similar to those
in current use is simulated in Fig. 1, (termed “Small, slow system” in the figure). (All PSFs are
apodized to suppress diffraction.) Though the PSF has a defined core, when it is examined on a
log-scale, there is a large halo of scattered light which prevents high contrast imaging. That said,
GPI requires the AO system to have only a few tens of nanometers of residual error. A first key step
to enable this performance is to design a system that operates at higher frame rates and with many
more control points, termed actuators, on the DM. GPI’s design has ∼ 1600 actuators, instead of a
few hundred, and will run at frame rates up 1.5 kHz. Higher rates allow the AO system to better
adapt with the dynamic atmosphere; more actuators allow the DM to more accurately approximate
the phase aberration’s spatial structure.

The primary barrier to faster and larger systems is the computational cost of the wavefront recon-
struction. Traditional implementation of matrix-based wavefront reconstruction are too expensive.
Poyneer, et. al., developed a computationally efficient Fourier Transform Reconstruction (FTR)
technique. This technique treats the reconstruction problem as a filtering problem: the wavefront
sensor can be described with a filter, and the reconstruction is simply the inverse filter, applied with
Fourier transforms. Although reconstruction using Fourier Transforms had been previously consid-
ered using square periodic apertures, the FTR technique was designed for realistic (i.e. annular)
apertures. Because of computationally efficient DFTs, FTR takes 45 times less computation per
reconstruction than the traditional matrix multiplication for GPI. This enables GPI to be built with
an off-the-shelf computer as the controller, instead of very expensive custom-programmed DSPs.
In addition to being fast, FTR provides a flexible framework for sophisticated wavefront control
strategies, as discussed later.

The PSF of a fast AO system with ∼ 1600 actuators is shown in Fig. 1 (termed “Large, fast
system”). FTR enables a square region of better correction to be formed around a tight core of the
PSF. Outside this square region is the uncorrectable high spatial frequency phase aberrations caused
by the atmosphere. Inside this square region is the correctable phase. Note that in this configuration
performance is limited, as indicated by a “+” shape of scattered light inside the square. This shape
is caused by aliasing in the wavefront sensor. Because the Shack-Hartmann WFS samples the phase,
the measurements suffer from aliasing. High spatial frequency phase errors are incorrectly measured
as low spatial frequency ones, leading to significant performance degradation in closed loop. One
easy way to prevent aliasing is to low-pass filter the signal before sampling. This is done optically



Figure 1: Five different 12-second point-spread functions (PSFs) for a 6th magnitude star and five-
layer frozen flow atmosphere simulation. See the text for descriptions of the AO technique used in
each simulation. From a general purpose AO system (“Small, slow system”) to the Gemini Planet
Imager with prediction (“Predictive control”), there is 100 times less scattered light in the dark hole
region where extra-solar planets will be imaged.

by the spatially filtered WFS with a square field stop.5,6 For typical GPI operating conditions,
the spatial filter will attenuate high spatial frequency phase power by a factor of 1000, essentially
removing the aliasing error term. This excellent attenuation of high spatial frequency phase prevents
the aliasing error term that can dominate large, fast AO systems.

Spatially filtering the WFS greatly improves the performance of high-performance AO systems.
The PSF (“With spatial filter” in Fig. 1) no longer has this “+” pattern of light. Instead a dark
hole is generated, exposing the true performance of the closed-loop AO system. The remaining
scattered light is due to residual atmospheric error (from temporal lags in the AO system) and WFS
noise. Performance can be further improved through optimization of the system’s wavefront control
algorithms. Such an optimization technique is used in matrix-based AO systems. Termed modal gain
optimization, this method works by optimizing the gain of the integral controller for each mode given
AO telemetry. Poyneer and Véran applied this technique to Fourier reconstruction, after determining
that FTR provides independent control of each spatial frequency in the wavefront.1 In this modal
formulation, the optimized gains are implemented as a filter. Optimized-gain Fourier Control (OFC)
provides several advantages over the existing matrix-based gain optimization methods. Again, using
Fourier modes provides significant computational advantage in determining the new optimal control
parameters and implementation that control. A particular advantage is that in the high-performance
case the Fourier modes directly correspond to spatial locations in the PSF’s dark hole. As a result,
(see “Optimized gain” in Fig. 1) minimizing the error on each Fourier mode minimizes the scattered
light at all spatial locations in the dark hole. This optimization is particularly important because
natural variations in atmospheric power and wind velocities cause the controllable Fourier modes



to have a wide range of optimal gains. Without this adaptive optimization to current operating
conditions, GPI’s AO system would have sub-optimal contrast at nearly all locations inside the dark
hole.

In astronomical AO, layers of wind in the atmosphere can appear to blow turbulence across
the aperture (a process termed frozen flow); this creates structure which a predictive controller
could exploit. Because the Fourier modes are spatially and temporally uncorrelated under frozen
flow, each Fourier mode can be predicted independently, allowing drastic reduction of the model
complexity and computational cost. Furthermore, the temporal power spectrum of a Fourier mode
has a compact and easily identifiable shape under frozen flow: each layer contributes to a narrow
peak of power in temporal frequency. This means that specific atmospheric layers can be easily
identified using closed-loop telemetry.

Using this insight, and building on the closed-loop Kalman model of Le Roux, Poyneer and her
colleagues developed a state space model for AO prediction of a Fourier mode with an atmosphere
composed of an arbitrary number of wind-blown layers.8 She derived a steady-state Kalman filter
from this model and showed how closed-loop telemetry provides the parameters necessary to solve
the Algebraic Riccati Equation and determine each mode’s predictive controller. Furthermore, the
Kalman filter is computationally efficient, and allows the measurement of atmospheric characteristics
during operation.

This predictive controller is stable, computationally efficient and effective. All of the PSFs in
Fig. 1 were generated with a simulated AO system correcting a five-layer atmosphere with frozen
flow. When Predictive Fourier Control is used (see “Predictive control” PSF in the figure), these
layers are easily detected and then predicted, resulting in a much darker and more uniform dark
hole. For GPI, moderate wind-blown turbulence will produce substantial power in the 40-80 Hz
range. This is why prediction is so useful: an integral controller does not correct that power well,
even when optimized. The Kalman filter, on the other hand, can selectively correct each layer, even
in this temporal frequency range.

2.2 National Ignition Facility Optics Inspection

The Laboratory has a long history with the development of lasers and their application to achieving
ignition (controlled fusion). This past May 2009, the National Ignition Facility (NIF) was dedicated
with its threefold mission: provide key experimental resources to ensure the safety and reliability of
the national nuclear deterrent, enable breakthroughs in planetary science and astrophysics, and to
study fusion as a potential energy source. NIF is the highest-energy laser system in the world, con-
sisting of 192 laser beams that can be focused into a small volume, the size of a pencil eraser. When
fully operational, NIF will be able to deliver two million joules of energy and create temperatures
and pressures that exist in stars.

A key technology that enables NIF to deliver such energy is highly specialized optics technology
and the continual inspection of those optics. It is critical to the operation of the laser system to
detect and characterize imperfections in the optics thereby minimizing scattering and maximize
energy throughput. Automated optics inspection allows NIF operators to monitor the optics trains
in each of the 192 beam lines, and remove optics to mitigate imperfections or refurbish the optic as
needed. Each beamline can contain dozens of optics, for a total of approximately eight thousand
pieces in the aggregate system. The inspections are complicated in that they are performed in situ
by imaging along the beam lines, through other optics and adjusting the focus to a particular optic.
Various illumination techniques (backlighting, edgelighting, etc.) and focal lengths can be applied to
individual optics to gather the necessary information for imperfection detection and characterization.
As a result, imperfections in the optics can appear as dark regions on a bright background, or bright
regions on a dark background. The resolution of the imagery is approximately 20 µm, readily
enabling the detection of imperfections on the order of 50 µm. The number of pixels per image



ranges from 4096 × 4096 to 16384 × 16384.

Kegelmeyer, et. al, have developed a comprehensive suite of image analysis and pattern recogni-
tion tools to detect, characterize and track imperfections in NIF optics.17,18 Imagery is preprocessed
so that the background of the optic is dark, and imperfections in the optic appear bright. The im-
agery is next processed with the Local Area Signal-to-Noise Ratio (LASNR) image segmentation
algorithm.17 LASNR has been found to be highly effective at detecting imperfections in NIF optics
inspection imagery. Essentially, it estimates the signal-to-noise ratio for each pixel in an image, using
a local-area neighborhood surrounding the pixel to estimate noise statistics. Several neighborhood
sizes are selected using a-priori information on the anticipated sizes of the imperfections. Applying
LASNR at several scales yields a family of local-area SNR images, one for each scale size. Applying
preselected thresholds associated with each scale yields (at least) one seed pixel within each im-
perfection. (Computationally efficient methods have been developed to implement the multi-scale
LASNR algorithm.) Seed pixels from different scales are combined, and the resulting seed pixel is
used with an adaptive threshold to segment the imperfection from the background.

After imperfections have been detected and segmented from the background, a number of at-
tributes of the imperfection are calculated. Examples include area in pixels, sum of pixel intensities,
mean and standard deviation of pixel intensities, minimum, maximum of pixel intensities, long and
short axis of the best-fit ellipse, edge strength, and similar features. Features extracted from im-
perfections are tracked over time to characterize the rate of change of the imperfection. Optical
experts examine the features to determine when intervention is required. To aid the optics experts
in this determination, a machine learning technology called Avatar is employed. Avatar is a suite
of machine learning tools developed by Sandia National Laboratories (Albuquerque, New Mexico)
(http://www.ca.sandia.gov/avatar) which are exceptional in that its parameters are self regulating
for maximum accuracy. For example, it creates an ensemble of decision trees from training data such
that the number of trees optimizes the out-of-bag accuracy. By carefully creating an accurate and
extensive training set for use with Avatar, the NIF Optics Inspection output has greatly reduced
the number of false alarms from an untenable number that could not be reviewed in many hours to
a small number that can be reviewed in minutes.

2.3 Speckle Imaging

For many surveillance and target identification applications the imaging system must look through
the atmosphere along a horizontal or slant path. Turbulence along the path causes variations in
the index-of-refraction that lead to phase errors in the propagating field. When the optical beam is
brought to focus the resulting image is blurred by the atmospheric phase errors. For a typical near-
ground horizontal path the blurring can be quite severe. The resolution of an eight-inch telescope will
be reduced by as much as a factor of 20 along a horizontal path in average atmospheric turbulence.

In a short exposure image looking through the atmosphere, the atmospheric phase errors are
frozen in time. The image is a speckle pattern which contains spatial frequencies all the way out
to the diffraction limit. No information is lost—it is just scrambled in phase. If the short exposure
images are averaged, the resulting long exposure image is blurred, even if the imagery was stabilized.
The high spatial frequencies are lost in the averaging process.

The Laboratory began to conduct research in speckle imaging in the early-1990s, and continues
to this day.19–26 The imaging can be modeled as the convolution

in(x) = τn(x) ∗ o(x) (1)

where in(x) is the nth speckle image in an ensemble, o(x) is the object, and τn(x) is the combined
atmosphere-telescope point-spread function. Fourier transforming both sides of Eqn. 1, the Fourier



magnitude can be estimated by averaging the power spectrum over each frame:

|O(u)|2 =
〈|In(u)|2〉n
〈|τn(u)|2〉n

(2)

Since 〈τn(x)〉 is unknown, it is modeled using the Labeyrie-Korff transfer function where the atmo-
sphere coherence length is iterated to find the best value. The complex bispectrum IB,n(u,v) is
used to find estimate the phase. It is defined as

IB,n(u,v) = In(u)In(v)In(−u− v) (3)

where u and v are spatial frequency vectors. The Fourier phase of the object is recursively related
to the phase of the average complex bispectrum according to a three point integration:

arg |O(u + v)| = arg |O(u)|+ arg |O(v)| − arg |〈IB,n(u,v)〉n| (4)

The phase of the object is recovered through recursive application of Eqn. 4. After the Fourier
magnitude and phase have been estimated, they are combined and inverse transformed to recover
the image.

In the past few years Carrano and her colleagues have made several advances in speckle imag-
ing.21–26 To test initial concepts on enhanced surveillance, a prototype speckle imaging system was
developed using commercially available components. One of the keys to this system is the avail-
ability of off-the-shelf high-resolution cameras with computer interfaces. The prototype system is
based on an eight-inch Cassegrain telescope, a 1280x1024 pixel commercial video camera with an
electronic shutter capable of < 1 ms exposures, and a laptop computer. The prototype system has
been tested in a series of experiments conducted at standoff distances from 0.5 km to 60 km over a
broad range of atmospheric and lighting conditions. The figures in Fig. 2 show examples of imagery
acquired from the top of Mt Diablo, a 3849’ peak in Northern California, located approximately
30 km from LLNL. In Fig. 2a and 2b the three objects in the image are cargo, water, and flatbed
trucks imaged at a range of 29 km and in Fig. 2c and 2d we are looking at Lick observatory on the
top of Mt. Hamilton. The speckle image reconstructions on the right provide significantly higher
resolution than the unprocessed images on the left.

2.4 Time reversal techniques for characterizing targets and enhancing
communications in complex environments

Over the last 15 years, there has been a rapid growth in applications of time-reversal symmetry
of wave propagation to enhance communications and imaging in complex environments. These
techniques exploit both temporal and spatial reciprocity of wave propagation to mitigate signal
distortion created from the large number of independent propagation paths between a transmitter
and receiver. Recent work has shown that time-reversal techniques can distinguish and locate targets
in highly scattering environments. Work at the Laboratory has gone beyond imaging to show that
time-reversal analysis of array data can reveal target characteristics such as size, shape, orientation,
and composition.27–30

The application of time reversal symmetry to target characterization begins with the concept of
a time reversal array (TRA). In acoustics this consists of an array of transducers that can record the
pressure at each transducer location, store the resulting time series, reverses the series, then transmit
the reversed signal back into the medium. If there is a source in the medium, the TRA will record
the radiated field at the element locations, then transmit a reversed field that focuses back onto the
source. This focusing occurs even when the medium is highly scattering with multiple propagation
paths between source and array. If there is no source, the array focuses on the scatterer that reflects
the most energy transmitted from the array. A TRA requires a way to record and digitize signals,
save them in memory, then retransmit them. This is possible for most acoustic signals but becomes



(a) (b)
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Figure 2: Two examples of speckle image processing. The top example was collected at a range of
29 km, and the bottom figure at 60km.

challenging at radar frequencies. Fortunately, there is another way to exploit the properties of time
reversal using a more conventional multistatic array system.

Suppose we have an array of N transmitters and a separate array of M receivers. Let each
transmit element emit a pulse and then record the received signals from each element of the receiver.
The resulting M by N array of received signals is the multistatic response matrix (MRM) for
the array system. This matrix constitutes the data collected by the array system and contains
information about the medium and objects within the volume interrogated by the array. Processing
for target characterization begins by taking the Fourier transform of the MRM. For each frequency
we then calculate the singular value decomposition (SVD) to obtain a set of singular vectors and
singular values. If K(ω) is the Fourier transformed MRM, the SVD is

K(ω) = U(ω)S(ω)V†(ω) , (5)

where S is a diagonal matrix whose size is the rank of K. U is a matrix of M singular vectors
associated with the receivers and V is a matrix ofN singular vectors associated with the transmitters.
The advantage of using the SVD to decompose the MRM comes from the association between the
singular values and the targets in the array field of view.30 Each singular value represents a scattering
mode for a target and the associated singular vectors can be used to focus the field onto the target.

Consider a simple case of a linear array of 21 elements and three targets (Fig. 3). The distribution
of singular values of the MRM (Fig. 3b) can be divided into three large singular values and 18 smaller
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Figure 3: (a) Array with 21 elements (blue squares) at half wavelength spacing, with three targets
(red dots) at x, y positions (10, -1), (6, -4), (7, 5) with strengths 2, 1, and 3 respectively. (b) Spectrum
of singular values for array and targets in Fig. 3. Largest three singular values are associated with
the targets. The remaining 18 are associated with noise. (c) Fields created by the three singular
vectors associated with the targets (white dots) in Fig. 3b. Each field focuses on the target. (d)
MUSIC functional for three targets, image and surface views.

values. The fields associated with the three largest singular values focus on the scatterers (Fig. 3c).
Since the remaining 18 singular vectors are orthogonal to these ”target” singular vectors, we can
use this condition to construct new imaging functionals (e.g. MUSIC) that enhance the ability to
locate the targets (Fig. 3d).

In the more general case, more than one singular value can be associated with a given target. The
relative sizes of the singular values and their variation with array geometry can be used to extract
more information about the target. Figure 4a shows a linear array of small crossed electric dipoles
that can be rotated around the look direction. For a small ellipsoidal target there can be up to
six singular values depending on the conductivity, shape, location, and orientation associated with
the target. Figure 4b shows the variation of the three singular values associated with a perfectly
conducting disk whose rotational axis is tilted 45 deg from the look direction. As the array rotates
the singular values vary periodically, with the largest singular value attaining its maximum value
when the array axis is in the same plane as the disk axis. This would allow one in principle to
extract orientation information of nonsymmetric targets from the singular value distribution without
creating an image of the target. Additional results can be found in the review paper by Chambers.30
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Figure 4: (a) Rotating linear array of small crossed dipole elements with an ellipsoid target. (b)
Singular values 1 (solid), 2 (dashed), and 3 (dash-dot) for a rotating linear array of crossed dipoles
and a perfectly conducting disk whose center axis is tilted 45 deg from the look direction. As the
array rotates the singular values vary in a periodic pattern, with the largest singular value maximum
when the array and the disk axis are in the same plane.

Time-reversal methods have also been applied to the problem of communication in a highly
reverberant environment. The fundamental concept involves time-reversing the impulse response
or Green’s function characterizing the uncertain communications channel to mitigate dispersion
and multi-path effects. Experiments with an acoustic communication system placed in a highly
reverberant room show that these methods can significantly reduce the effects of multipath and
noise for both narrow and wide band systems. Time-reversal methods can be applied in either a
broadcast scenario where a signal is transmitted to all possible receivers, or in a stealth mode where
only one receiver can receive the signal. Possible applications include battlefield communications,
transmission through waveguides (ducts), underwater communications, and propagation of signals
through highly scattering media (structures). Laboratory work in this area can be found in a series
of papers by Candy et al.27–29

2.5 Bayesian Sequential Processing for Radionuclide Detection and Parameter
Estimation

The Laboratory has a long history of research and development in radiation detection and isotope
identification. Considerable effort has been put towards developing detectors, and algorithms to
processed detector data.31–33 Recently, Candy, et. al. have been investigating Bayesian approaches
to the detection of radionuclides.34 The goal of their work is to provide quick detection of radioactive
contraband for low count data (ie., a small number of measurements) using sequential processing.

Radionuclides emit photons of characteristic energies at random times. These photons can be
detected, and their energy converted into a pulse where the pulse height is proportional to the
photon’s energy. Traditionally, the pulses are binned by energy to form a histogram. The shape
of the histogram (also called a pulse-height spectrum) is then used to detect the isotope(s) that
produced the photons. The left hand side of Figure 5 illustrates a pulse-height spectrum. That figure
plots energy(volts) versus count for a set of experimental composite radionuclide data consisting of
three radionuclides: cobalt (60Co), cesium (137Cs), barium (133Ba) with 2, 1 and 5 energy lines
(monoenergetic sources), respectively.

Candy and his colleagues model the source radionuclides as a superposition (union) of mo-
noenergetic (i.e., constant energy amplitude) sources. In this model, measured data consists of
a low count, impulsive-like, time series of measurements (energy vs time) called an event mode



Figure 5: The plot on the left is a pulse-height spectrum of cobalt (60Co), cesium (137Cs), barium
(133Ba) with background. The center plot is the event mode sequence (EMS) of the data. The right
column of plots is the processor output for the detection of (top to bottom) 60Co, 137Cs and 133Ba,
along with the detection threshold.

sequence (EMS). Define ξ(n; εm, τm) as the component of an EMS sequence as the nth-arrival
from the mth-monoenergetic source of energy level (amplitude), εm(n) and arrival time, τm(n)
with associated decay rate, λm(n) —as a single photon impulse sample, that is, ξ(n; εm, τm) =
εm(n)δ(t − τm(n)) and source rate λm(n). In order to define the entire emission sequence over a
specified time interval, [to, T ), we introduce the set notation, τ̃m := { τm(1) · · · τm(Nε(m)) } at
the nth-arrival with Nε(m) the total number of counts for the mth-source in the interval. There-
fore, ξ(n; εm, τ̃m) results in a unequally-spaced impulse train. The interarrival time is defined by
4τm(n) = τm(n) − τm(n − 1) for 4τm(0) = to with the corresponding set definition (above) of
4τ̃m(n). Thus, from the detector measurement of the individual photon arrivals, or equivalently
the entire EMS, a particular radionuclide can be uniquely characterized. It follows that a complete
radionuclide can be represented in terms of its monoenergetic decomposition, that is, the EMS is:

Rη(n; ε,4τ) =
Mε∑
m=1

Nε(m)∑
n=1

ξ(n; εm(n),4τm(n)) =

Mε∑
m=1

Nε(m)∑
n=1

εm(n)δ(t−4τm(n)) (6)

where Rη(n; ε,4τ) is the composite EMS of the radionuclide, Mε is the number of monoenergetic
source components in the composite EMS, Nε(m) is the number (counts) of arrivals from the mth-



monoenergetic source component in the time-interval, [to, T ), εm(n) is the nth-arrival of γ-ray energy
(amplitude) level of the mth-monoenergetic component in the time-interval of the composite EMS,
4τm(n) is the nth interarrival time of the mth-monoenergetic component, in the time interval of the
composite EMS. This representation can be extended even further to capture a set of radionuclides
as well. Thus, this unique physics-based representation provides the basis to develop signal models
for subsequent processing.

The underlying physics of photon production from radionuclides requires a slight modification
to Equation 6. The emission of monoenergetic photons follows a well-defined probability structure,
that is, all monoenergetic photons are not present in the EMS during an individual event (single
photon arrival) only one of the energy amplitude levels is present as dictated by its branching or
probability of occurrence (αi) associated with its inherent structure as specified in its energy decay
diagram. Therefore, we model this decay structure by a Markov chain model incorporating an
indicator function Ij(m) = δjm where δjm a Kronecker delta. Indicator function Ij(m) is a random
variable such that Pr(Ij(m) = 1|ξ(n; ε, τ) = Pr(Ij(m) = 1|Ξn) = αj for αj the corresponding
branching or probability of occurrence of the jth-monoenergetic RN component conditioned on the
set of EMS measurements Ξn := {ξ(1), · · · , ξ(n)}.

With the inclusion of branching probabilities, the monoenergetic radionuclide model thus be-
comes

Rη(n; ε,4τ) =
Mε∑
m=1

Nε(m)∑
n=1

Ij(m)εm(n)δ(t−4τm(n)) (7)

With this in mind, the required radionuclide posterior distribution can be decomposed in terms of
each arrival pair (εj(n),4τj(n)) along with its associated probability of occurrence, αj , that is,

Pr (Rη(n; ε,4τ)|Ξn) = Pr (ε(n),4τ(n), Ij(m)|Ξn) (8)

Applying Bayes’ rule we obtain

Pr (Rη(n; ε,4τ)|Ξn) = Pr (4τ(n)|ε(n), Ij(m),Ξn)
× Pr (ε(n)|Ij(m),Ξn)× Pr (Ij(m)|Ξn) (9)

The posterior radionuclide probability can be estimated photon-by-photon and therefore evolves
to the following processor:

1. Given the “truth”: [{αtm}, {εtm}, {4τ tm}] ;m = 1, · · · ,Mε (from Tables);

2. Determine the jth-monoenergetic component with Pr(Ij(m) = 1) = αj , decide on energy-
interarrival pair (εj ,4τj);

3. Given m = j and the data Ξn, estimate the energy amplitude distribution: P̂r(εj(n)|Ξn);

4. Given εj(n) and the data Ξn, estimate the interarrival distribution: P̂r(4τj(n)|εj(n),Ξn);

5. Update the radionuclide posterior distribution Pr (Rη(n; εj ,4τj)|Ξn) using Eq. 9; and

6. Decide if this estimated distribution “matches” the target radionuclide distribution.

The output of a processor implementing the above approach is illustrated in the plots on the right
of Fig. 5. The plots illustrate that the detection of 137Cs and 133Ba within one second, and the
detection of 60Co within eight seconds. Observe that the rapid detection of these radionuclides
illustrates the potential of Bayesian sequential processing for radionuclide detection.



2.6 Other Areas of Research

There are many other areas of research in signal and image processing at the Laboratory. Space lim-
itations preclude even cursory discussion here, and interested readers are referred to the references.
The Laboratory has a large effort in Non-Destructive Evaluation (NDE), with extensive radiography,
computed tomography, and ultrasound facilities. Research in signal and image processing for NDE
has been an ongoing effort for the past two decades. Some results from this area are found in the
papers by Martz and his colleagues.35–41

Video processing and exploitation have recently become important research areas for the Labo-
ratory. Efforts in this area include image stabilization and registration,42 object and vehicle track-
ing.?, 43–45 Video processing also plays an important role in NIF where it is used to determine the
position of the laser beams for close loop alignment of the 192 beams. See the papers by Awwal and
Wilhemsen for details.46–48 More generally, some recent results in recognizing objects in imagery
can be found in the papers by Manay and Pagleroni.49,50

3. CENTER FOR ADVANCES SIGNAL AND IMAGING SCIENCES

The Center for Advanced Signal and Imaging Sciences (CASIS) was founded by Jim Candy in
the early 1990s with the purpose of providing a forum for Laboratory engineers and scientists to
exchange technical information in the areas of signal and image processing. CASIS sponsors a two-
day workshop each Fall, where researchers present their latest results. The workshop also has one
or more keynote speakers that present their recent research to the Laboratory. Table 1 lists several
past years of speakers and their topics. In recent years, the CASIS workshop has expanded its focus
areas to include pattern analysis and machine intelligence, subjects that are of interest to signal and
image processing researchers. The workshop has also expanded beyond the Laboratory to include
technical staff from the neighboring Sandia National Laboratory.

Year Speaker Title
2008 Prof Jose Principe, U Florida Information Theoretic Signal Processing
2007 Prof Jittendra Malik, Berkeley Recognizing Objects and Actions in Images and

Video
2006 Prof Sanjit Mitra, USC Recent Research Results in Image and Video Pro-

cessing
2006 Dr. James Candy, UCSB, LLNL A Bayesean Approach to Nonlinear Statistical Sig-

nal Processing
2005 Prof James Flanagan, Rutgers Natural Interfaces for Information Systems
2004 Proj James McClellan, GA Tech Array Signal Processing for Locating Buried Ob-

jects and Tracking Moving Targets
2004 Prof Alan Oppenhiem, MIT Things My Mother Never Told Me (About Signal

Processing)
2003 Dr. Thomas Budinger, Berkeley Recent Advances in Medical Imaging
2002 Dr. Leon Cohen, U New York Time-Frequency Descriptions of Signals
2002 Dr. Alan Witten, U. Oklahoma Expedition Adventure using Geophysics to find

Dinosaur Pirate Ships and Cavemen
2001 Prof. A. Paulraj, Stanford Multiple Input Multiple Output (MIMO) Wire-

less: The New Frontier
2001 Dr. James Greenleaf, Mayo Clinic Vibro-acoustography: Ultrasonic imaging without

speckle
Table 1: Recent CASIS speakers



4. SUMMARY

Signal and image processing are important technologies at the Lawrence Livermore National Lab-
oratory. Although originally applied to analyzing nuclear weapons test data, they have emerged
as independent research areas. Vignettes of several recent research and development efforts were
presented, along with a long list of references. The Center for Advance Signal and Imaging Sciences
was briefly described, along with a listing of recent keynote speakers.
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